1. If f:R2R , f(x1,x2)=x12+x22 then the initial guess for a gradient descent iteration is x(0)=(1,1)T and α>0, then |f(x(1))|<|f(x(0))| if

    1. 0<α<1
    2. α>0
    3. α>12
  2. If f:R2R , f(x1,x2)=ex1+x22 then the initial guess for a gradient descent iteration is x(0)=(0,0)T and α>0, then |f(x(1))|<|f(x(0))| if

    1. α>12
    2. α>0
    3. 0<α<1
  3. If f:R2R , f(x1,x2)=x1ex2 then the initial guess for a gradient descent iteration is x(0)=(1,1)T and α=12, then :

    1. x(1)=(1e2,1e2)T
    2. x(1)=(1+e2,1+e2)T
    3. x(1)=(12e2,12e2)T
  4. If f:R2R , f(x1,x2)=ex1+x22 then the initial guess for a gradient descent iteration is x(0)=(0,0)T and α>0, then:

    1. x(1)=(α,0)T
    2. x(1)=(0,0)T
    3. x(1)=(α,2)T
  5. For Standard IEEE, double precision representation is:

    1. F(2,64,1024,1023)
    2. none
    3. F(2,53,1024,1023)
  6. For Standard IEEE, single precision representation is:

    1. F(2,24,128,127)
    2. none
    3. F(2,32,128,127)
  7. Given two independent random variables X and Y, then

    1. p(x)=p(y)
    2. p(y)=p(y|x)
    3. p(x|y)=p(y)
  8. Given two random variables X and Y, Bayes Theorem implies that:

    1. p(x)=p(y)p(y|x)/p(y|x)
    2. p(x)=p(x|y)p(y|x)/p(y)
    3. p(y)=p(y|x)p(x)/p(x|y)
  9. If f:R2R, f(x)=||Axb||22 for ARmn, bRm, then:

    1. f(x)=2AT(Axb)
    2. f(x)=AT(Axb)
    3. f(x)=A(ATxb)
  10. If f:R2R, f(x)=||Axb||22 for ARmn, bRm, then minimum of x can be computed as:

    1. ATAx=b
    2. ATAx=ATx
    3. Ax=b
    4. ATAx=ATb
  11. The machine precision ϵ can be defined as:

    1. The smallest number ϵ such that fl(1+ϵ)=1
    2. The smallest number ϵ such that fl(1+ϵ)>1
    3. none
  12. Given two random variables X and Y such that p(x)=12πe12x2 and p(y|x)=ce|yax| then the MAP reads:

    1. x=argminx|yax|+12x2
    2. x=argminx|yax|
    3. x=argminx12(yax)2
  13. Given two random variables X and Y such that p(x)=12πe12x2 and p(y|x)=12πe12(yax)2 then the MAP reads:

    1. x=argminx12(yax)2+|x|
    2. x=argminx12(yax)2+12x2
    3. x=argminx12(yax)2
  14. If $$ \begin{bmatrix} 2 & 1& -2 \ -1 & 0 & 1 \ -1 & 2 & 1 \end{bmatrix} $$

    1. A is orthogonal
    2. none ✅
    3. A is symmetric and positive definite
  15. If

    [2001]
    1. A is symmetric and positive definite ✅
    2. A is non symmetric and not positive definite
    3. A is symmetric but not positive definite
  16. If

    [231323232313132323]
    1. A is symmetric and positive definite
    2. A is non symmetric and not positive definite
    3. A is orthogonal ✅
  17. If

    [221202123]
    1. A is symmetric but not definite positive ✅
    2. A is symmetric and definite positive
    3. A is orthogonal
  18. If

    [1103]
    1. A is symmetric but not definite positive
    2. A is symmetric and definite positive
    3. A non symmetric and not positive definite ✅
  19. If

    [9665]
    1. A is symmetric but not definite positive
    2. A is symmetric and definite positive ✅
    3. A non symmetric and not positive definite
  20. If

    [1003]
    1. A is symmetric but not definite positive ✅
    2. A is symmetric and definite positive
    3. A non symmetric and not positive definite
  21. If

    [103110112]
    1. rank(A)=2
    2. rank(A)=1
    3. rank(A)=3 ✅
  22. If

    [068240108]
    1. rank(A)=2
    2. rank(A)=1
    3. rank(A)=3 ✅
  23. If

    [101010111]
    1. rank(A)=2 ✅
    2. rank(A)=1
    3. rank(A)=3
  24. If

    [2000030000200000]
    1. rank(A)=3 ✅
    2. rank(A)=4
    3. rank(A)=2
  25. If

    [111222111]
    1. rank(A)=2
    2. rank(A)=1 ✅
    3. rank(A)=3
  26. If

    [021110131]
    1. rank(A)=2 ✅
    2. rank(A)=1
    3. rank(A)=3
  27. If

    [2000030000200004]
    1. rank(A)=3
    2. rank(A)=4 ✅
    3. rank(A)=2
  28. If

    [101010212]
    1. rank(A) = 1
    2. rank(A) = 3
    3. rank(A) = 2 ✅
  29. Given two random variables X and such that p(x)=12πe12x2 and p(y|x)=ce|yax|, then the MLE reads:

    1. x=argminx|yax|+x2
    2. x=argminx12(yax)2
    3. x=argminx|yax|
  30. Given two random variables X and such that p(x)=ce|x| and p(y|x)=12πe12(yax)2, then the MLE reads:

    1. x=argminx12(yax)2+|x|
    2. x=argminx12(yax)2+12x2
    3. x=argminx12(yax)2
  31. Given two random variables X and such that p(x)=12πe12x2 and p(y|x)=12πe12(yax)2, then the MLE reads:

    1. x=argminx12(yax)2+x2
    2. x=argminx12(yax)2+12x2
    3. x=argminx12(yax)2
  32. If

    [1000030000000000]
    1. The 2-norm of A is ||A||2=1
    2. The 2-norm of A is ||A||2=0
    3. The 2-norm of A is ||A||2=3
  33. if

    [2000030000200004]
    1. The 2-norm of A is ||A||2=2
    2. The 2-norm of A is ||A||2=4
    3. The 2-norm of A is ||A||2=2
  34. If

    [1000030000200000]
    1. The 2-norm of A is ||A||2=3
    2. The 2-norm of A is ||A||2=0
    3. The 2-norm of A is ||A||2=2
  35. If A is an n×n matrix, then

    1. ||A||1=i=1nj=1nai,j2
    2. ||A||1=p(ATA)
    3. None of the above ✅
  36. If A is an n×n matrix, then

    1. None of the above ✅
    2. ||A||2=p(ATA)
    3. ||A||2=i=1nj=1nai,j2
  37. If A is an n×n matrix, then

    1. ||A||F=i=1nj=1nai,j2
    2. None of the above
    3. ||A||F=p(ATA)
  38. If ARm×n,||A||p=0, then:

    1. A=0 ✅
    2. rank(A)=0
    3. A can be both equal or not equal to 0
  39. A matrix ARn×n is orthogonal if:

    1. A1A=I=AA1
    2. ATA=I=AAT
    3. A=AT
  40. If X:ΩT is a continuous random variable, then a function p:TR+ can be the PDF of X if:

    1. Tp(x)dx=1
    2. Ωp(x)dx=1
    3. Tp(x)dx<
  41. For a random variable X:ΩT with E[X]=0, it holds:

    1. Var(X)=E[X]
    2. Var(X)=E[X2]
    3. Var(X)=0
  42. If X:ΩT is a discrete random variable, then a function fX:T[0,1] can be the PDF of X if:

    1. iΩfX(i)=1
    2. ΩfX(x)dx=1
    3. iTfX(i)=1
  43. Given a discrete random Variable X:ΩT with T=1,2,6 and fx=16,16,...,16 then:

    1. E[X]=21
    2. E[X]=3.5
    3. E[X]=1/6
  44. Given a continuous random Variable X:ΩT with T=[0,1] and p(x)=3x2 its PDF, then:

    1. E[X]=2
    2. E[X]=3
    3. E[X]=3/4
  45. Given a continuous random Variable X:ΩT with T=[0,1] and p(x)=2x its PDF, then:

    1. E[X]=2/3
    2. E[X]=2
    3. E[X]=1
  46. If X:ΩT is a continuous random variable with PDF p:TR+, then:

    1. E[X]=Tp(x)dx
    2. E[X]=Ωxp(x)dx
    3. E[X]=Txp(x)dx
  47. f X:ΩT is a continuous random variable, its PDF pX(x) is defined to be:

    1. P(X=x)=pX(x)
    2. P(X=x)=xpX(x)dx
    3. P(X=x)=ApX(x)dx
  48. f X:ΩT is a continuous random variable, its PDF pX(x) is defined to be:

    1. A function pX:TR+
    2. A function pX:T[0,1]
    3. A function pX:Ω[0,1]
  49. If X:ΩT is a discrete random variable, its PMF is:

    1. fx(x)=P(x)dx
    2. fx(x)=P(Xx)
    3. fx(x)=P(X=x)
  50. Given a discrete random Variable X:ΩT with T={1,2,3} and Fx=12,16,13 its PMF, then:

    1. E[X]=6
    2. E[X]=2
    3. E[X]=11/6
  51. Given two discrete random variables X1:ΩT, X2:ΩT with T={1,2,3} and fx1=13,13,13 and fx2=12,16,13 then:

    1. E[X1]>E[X2]
    2. E[X1]=E[X2]
    3. E[X1]<E[X2]
  52. Given two discrete random variables X1:ΩT, X2:ΩT with T={1,2,3} and fx1=12,16,13 and fx2=16,13,12 then:

    1. E[X1]>E[X2]
    2. E[X1]=E[X2]
    3. E[X1]<E[X2]
  53. A random variable X is:

    1. A function X:ΩT
    2. A variable that returns random elements with known probability
    3. A set that contains the possible outcomes of the experiment
  54. If Ω is the sample space, A is the event space and T is a subset of R, a random variable X is:

    1. A function X:ΩA
    2. A function X:AT
    3. A function X:ΩT
  55. In normalized scientific notation and base β=10, if x = 2.71, then:

    1. The mantissa of x is 0,271 and the exponential part is 101
    2. The mantissa of x is 2.71 and the exponential part is 100
    3. none
  56. If A=UΣVT is the SVD decomposition of an mn matrix, then a dyad Ai=uiviT of A is:

    1. None
    2. A vector of length mn that express some properties of A
    3. A rank-1 matrix of dimension mn
  57. If A=UΣVT is the SVD decomposition of an m*n matrix, then:

    1. ATA=VTΣ2V
    2. ATA=UΣ2UT
    3. ATA=VΣ2VT
  58. If A=UΣVT is the SVD decomposition of ARmn, then its rank k approximation of A~(k) satisfies:

    1. A~(k)=argminrk(B)=k||AB||2
    2. A~(k)=argminrk(B)=k||AB||F
    3. A~(k)=σk+1
  59. If A=UΣVT is the SVD decomposition of a mn matrix A, then:

    1. The rows of VT are eigenvectors of AAT
    2. None
    3. The columns of U are eigenvectors of AAT
  60. If A=UΣVT is the SVD decomposition of a mn matrix A, then:

    1. The rows of VT are eigenvectors of ATA
    2. None
    3. The columns of U are eigenvectors of ATA