Propositional Logic: Syntax, Semantics, Natural Deduction
Alphabet for Propositional Logic
| Symbol | ||
|---|---|---|
| and | conjunction | |
| or | disjunction | |
| if...then... | implication | |
| not | negation | |
| iff(if and only if) | equivalence, bi-implication | |
| falsity | falsum, absurdum. 永远为F | |
| always true | ||
| for all | ||
| exists | ||
- Given a formula
and an interpretation , if is true under , we say that is a model for . 可以记作 - Valid : also called Tautology,在所有interpretation下都为真。F is valid 记作
- inconsistency: 在所有interpretation下都为F
- invalid: 至少一种interpretation为F
- conjunctive normal form(CNF),交集符号相连的literal,CNF中的这些literal叫做clause
- disjunctive normal form (DNF),并集符号相连的literal

意为从 推导出 . If there exists a derivation with hyposthesis (premises) and conclusion . When we say that is a theorem. is consistent if is inconsistent if
Logic and Calculus: Resolution for propositional logic
- soundness:
,可靠性(正确性),如果某个公式能在推理系统中被证明,那么它在所有模型中都是真的 - completeness:
,完备性,如果某个公式能在推理系统中被证明,那么它在所有模型中都是真的 - The idea is to work by contradiction(反证), i.e. to use refutation: Theory united with negated consequence must be unsatisfiable.
- example:为了证明
可以转而证明 或者写成 - 反驳方法是:
- 把
的所有公式 + 写成一个集合 - 转成 CNF
- 看它是否 unsatisfiable
- 如果能推导出空子句(contradiction),说明集合不可满足
- 因此
必然成立
- 把
- example:为了证明

